Math 579 Fall 2013 Exam 8 Solutions

1. Solve the recurrence specified by $a_{0}=2, a_{n}=3 a_{n-1}(n \geq 1)$.

We have characteristic equation $r^{n}-3 r^{n-1}=0$, which has single root $r=3$. Hence the general solution is $a_{n}=A 3^{n}$. We have $2=a_{0}=A 3^{0}=A$, so $A=2$ and our solution is $a_{n}=2 \cdot 3^{n}$.
2. Solve the recurrence specified by $a_{0}=2, a_{n}=3 a_{n-1}+2(n \geq 1)$.

We first solve the homogeneous recurrence $a_{n}=3 a_{n-1}$, as in problem 1. Next we seek a single solution to the nonhomogeneous problem. Since 2 is a polynomial in n, and the general homogeneous solution isn't, we guess solution $a_{n}=k$ (constant polynomial). We solve $k=3 k+2$ to get $k=-1$, and general nonhomogeneous solution $a_{n}=A 3^{n}-1$. Finally, we have $2=a_{0}=A 3^{0}-1$, so $A=3$ and our solution is $a_{n}=3 \cdot 3^{n}-1=3^{n+1}-1$.
3. Solve the recurrence specified by $a_{0}=2$, $a_{n}=3 a_{n-1}+3^{n}(n \geq 1)$.

We first solve the homogeneous recurrence $a_{n}=3 a_{n-1}$, as in problem 1. Next we seek a single solution to the nonhomogeneous problem. Since 3^{n} is an exponential with base 3 , which is part of the homogeneous solution already, we instead guess $a_{n}=k n 3^{n}$. We solve $k n 3^{n}=3\left(k(n-1) 3^{n-1}\right)+$ $3^{n}=k n 3^{n}-k 3^{n}+3^{n}$, which has solution $k=1$. Hence the general nonhomogeneous solution is $a_{n}=A 3^{n}+n 3^{n}$. Finally, we have $2=a_{0}=A 3^{0}-0 \cdot 3^{0}$, so $A=2$ and our solution is $a_{n}=2 \cdot 3^{n}+n 3^{n}$.
4. Let a_{n} be the number of ways to fill a $2 \times n$ chessboard using white 1×1 squares, red 2×2 squares, and blue 2×2 squares. Find a recurrence and a closed form for a_{n}.
Looking at the initial part of the chessboard, the first column could be filled with two 1×1 squares, or the first two columns could be filled with either a red or blue 2×2 square. Hence $a_{n}=a_{n-1}+2 a_{n-2}$. This has characteristic equation $r^{2}-r-2=0$, which has two roots $r=2,-1$. Thus the general solution is $a_{n}=A 2^{n}+B(-1)^{n}$. Our initial conditions are $a_{0}=a_{1}=1$, which gives us equations $A+B=1,2 A-B=1$. This has solutions $A=\frac{2}{3}, B=\frac{1}{3}$, so the final answer is $a_{n}=\frac{1}{3}\left(2^{n+1}+(-1)^{n}\right)$.
5. Solve the recurrence specified by $a_{0}=2, a_{1}=3, a_{2}=8$, and (for $n \geq 3$), $a_{n}=-a_{n-1}+a_{n-2}+a_{n-3}+8$.

We first consider the homogeneous recurrence, leaving off the final 8. The characteristic equation is $0=r^{3}+r^{2}-r-1=(r+1)^{2}(r-1)$. Hence the general solution is $a_{n}=A(-1)^{n}+B n(-1)^{n}+C(1)^{n}=$ $(A+n B)(-1)^{n}+C$. Turning to the nonhomogeneous problem, the 8 is a polynomial in n; however we already have zeroth-degree polynomials represented in the homogeneous problem. Hence we guess second-degree polynomial $a_{n}=k n$. We have $k n=-k(n-1)+k(n-2)+k(n-3)+8$. Like magic, all the terms with n drop out, and we're left with $0=k-2 k-3 k+8$, which has solution $k=2$. Hence the general solution is $a_{n}=(A+n B)(-1)^{n}+C+2 n$. We have $2=a_{0}=A(-1)^{0}+C$, $3=a_{1}=(A+B)(-1)^{1}+C+2,8=(A+2 B)(-1)^{2}+C+4$, which has solution $A=0, B=1, C=2$. Hence the final answer is $a_{n}=n(-1)^{n}+2+2 n$.

